PROJECT DESCRIPTION

1 Introduction

We are proposing a 5 year study of the use of enriched declarative programming languages in sys-
tem specification and development. This is a collaborative group proposal involving 11 researchers
(1 PI, 1 co-PI and 9 subcontracted collaborators). Our research is aimed at exploiting the potential
of recently designed extensions to logic programming languages to aid in specification and devel-
opment of integrated software systems. This potential is well beyond the capabilities of traditional
logic programming languages.

Logic programming extensions (to stronger logics, constraints, monadic enrichments for data
and state database query formalisms, etc.) that preserve the declarative transparency of the Horn
Clause core now make it possible for declarative programming to come much closer to its original
aim of serving as a powerful, clear and efficient tool both for specification and development of
software systems. This is especially true for systems integrating different components: databses,
rules, and other modules of code. Languages resulting from these extensions, here called DPL’s
(Declarative Programming Languages) permit a principled approach to system design by providing
a powerful specification formalism, strong enough to capture high-level concepts and large-scale
modular program structure without the need of messy coding of this structure into a weak fragment
of logic. They allow for space and time saving considerations at the specification level, via the use
of declarative treatment of state and control (e.g. with linear logic). Most importantly: they
provide dual assistance to the system developer as a specification language for further refinement
into code, and as an ezecutable prototype language for rapid prototype development and testing.

Because of its declarative character, that is to say, because it is a mathematically precise object,
DPL code can be analyzed and tested in a logical manner (using techniques for assertions, diagnosis,
logical debugging and a rich operational semantics, discussed above, many of which were invented
by the PI’s in earlier work), providing further assistance to the system developer who wishes to
test a first formalization of a client’s working specifications. We are thus able to provide some
tools to help deal with an as yet poorly understood and highly problematic stage in system design:
passing from working specifications to formal ones, and checking these specifications. This part
of system engineering is the hardest, and we are not promising a panacea for this very thorny
problem, rather some clear, modular tools, that will be available, as a project deliverable, in a
user-interface prototype.

We briefly mention some of extensions we will study. We will use the expressive power of

e constraints, for integrating symbolic and numerical environments, as well as for limited
amounts of control,

e higher-order logic to handle meta-programming and program transformation,
e [inear logic extensions for modelling state and control,

e monadic and categorical extensions to intruduce constraint domains, data types, control and
side-effects in a modular, declarative fashion,

e relational extensions and narrowing todevelop clean approaches to compilation, program
refinement, and to incorporate database features.

e new database query languages that incorporate monadic structure, collection types and poly-
morphism

Our work will rest on a thorough mathematical and semantic analysis of the way these ex-
tensions work in concert and how programs written in enriched DPL’s perform. We will define
rich specification formalisms that integrate extensions in a clean manner, and these will need to
be modelled. We will use several semantic approaches to accomplish this, such as abstract in-
terpretation and operational semantics that permit detection of different observables, declarative
debugging and compositional modelling of code. This theoretical foundation is an essential basis
for the development of truly declarative (logically clear and modular) tools for system design. It
will thus predominate during the first phase (approximately half) of our research.

In the second phase, our work will center on principles for the development of specifications
and refining code for integrated declarative program systems as well as program analyzers and
debuggers. We will develop a user-interface prototype environment for program development,
transformation and diagnosis.

The work is broad in scope: inevitably work with some extensions will prove more tractable
than others, some of the theoretical obstacles more formidable than others. It is not clear that all
of the extensions should be used simultaneously, which is the sort of thing our work may very well
expose. Some will prove more appropriate for different jobs. We will attempt to define and model
the abilities of each as part of a toolkit for the system developer.

We will seek to isolate those components that seem particularly practical and easy for the
system developer to use. Our research is largely a study of principles, models and tools, but it
will be guided, throughout the life of the project, by the system engineering aims of our work, and
will take special care to map out clear guidelines for development and use of these specification
formalisms by the system developer.

2 The Principal Investigators

A fundamental aim of this experimental partnership is to encourage fusion and cooperation be-
tween theory and practice and areas not traditionally connected in existing software and theory
communities, such as software development, program sythesis and transformation and declarative
modelling, language theory and compilation. The way ideas from these areas interact will be
discussed below.

The 11 members of the research group are listed here with their affiliations and principal areas
of research. CV’s are given in the biographical sketch section.

Peter Buneman University of Pennsylvania, Databases, Database Languages.

Daniel Dougherty, co-PI Wesleyan University, Rewriting, Unification, Relational Rewriting,
Automated deduction.

Peter Freyd University of Pennsylvania, Categories, Categorical Logic, Relational Computing,
Categorical semantics of Functional and Declarative Programming.

Manuel Hermenegildo Technical University of Madrid, Compilation, Debugging, Automatic
Parallelization, Abstract Interpretation, Higher-order languages.

Giorgio Levi University of Pisa, Declarative programming, Operational Semantics, Abstract In-
terpretation, Constraints, Program Diagnosis.

Jim Lipton, PI Wesleyan University, Relational and Logic Programming, Categorical syntax and
semantics of declarative programming.

Dale Miller Pennsylvania State University, Lambda-Prolog, Logical Extensions, Linear Logic
Programming, Specification.

Oege de Moor Oxford, Program Development from Specifications, Relational Computing, Pro-
gramming Language design.

Gopalan Nadathur University of Chicago, Lambda-Prolog, Higher-order logic programming, im-
plementation and compilation.

Michael O’Donnell University of Chicago, Logic Programming and programming with Equa-
tions, integration of Imperative and Object Oriented features.

Catuscia Palamidessi Pennsylvania State University and the University of Genoa, Higher-order
and Parallel Logic programming.

3 The Declarative Programming Paradigm and Prolog

Declarative programming means exploiting mathematically correct formal specifications directly
to execute or synthesize correct code. This is the correctness guarantee that defines the subject
(sometimes called declarative transparency or “declarity” for short) and it comes with a price.
On the one hand proposed extensions must meet stringent semantical requirements: preservation
of the meaning of original features, a high degree of modularity, a clear model theory that gives
independent mathematical meaning to the program text consistent with program behavior. On the
other hand one is barred from indiscriminate use of time-saving computational short-cuts which
might compromise the clarity of code and sacrifice the original gains. The major challenge then,
is to find mathematically sound principles for adding control components, expressive power and
efficiency. This makes the subject mathematically challenging and explains why technological
progress in the field must be accompanied by constant progress in theoretical foundations (linear
logic, type theory, categorical logic, relational formalisms, constraint systems, varieties, monads).

3.1 Early successes of Declarative systems

Since its introduction in 1972, Prolog has aroused great expectations in communities where fast
development of prototypes, knowledge representation, rule-based systems, mechanized reasoning
and nondeterminism have been used. Clients with long term concerns about software correctness
have been especially drawn to the idea of executable specifications.

Prolog has enjoyed widespread use as a rapid prototyping language for systems with rule based
components or with significant mathematical features. Examples of such applications include pro-
totyping systems that mix physical constraints (in the form of systems of differential equations, or

finite-element specifications) and rules, language interpreters in which rules play a significant role,
as well as symbolic algebra systems and AI applications (such as game-like programs). Prolog has
often been the language of choice for building sophisticated front ends for difficult-to-use database
or system components, as well as natural language interfaces to such programs. Finally, it has
been used extensively for building on-the-fly, domain specific rule systems of the sort that are often
programmed using rule-based system shells. These shells enjoyed widespread use in the 80s, but
had some drawbacks. They were often short-lived because they lacked portability. Applications de-
veloped using these expensive, proprietary, systems could not be combined with other components.
Prolog with its metaprogramming capabilities has been a more successful alternative to these shells:
it has the advantage of an international standard, public domain availability, extensive libraries,
interfaces to C, etc., that ensure longevity, portability and system openness.

Applications There have been extensive government and industrial applications of logic pro-
gramming languages in the areas mentioned in the preceding paragraph. We discuss a few repre-
sentative examples that underscore scalability, rapid prototyping and ease of use.

US Govt. applications

In the late 1980’s, the EPA developed a Prolog based system for on-site toxic spill diagno-
sis in the first 24 hours (before experts could arrive on the scene), which was installed on
laptops at different public safety locations near toxic sites. Another typical use of Prolog
as a rapid-development tool took place at MRSA (US army Logistics, Lexington KY. In
1988, programmers used an off-the-shelf Prolog implementation to build a user interface to
a twenty-year old COBOL inventory database that was shipped to US Army facilities in tar
files on a monthly basis. The database was extremely rigid, and could only be accessed by
a small group of programmers. Requests (by US Mail) for information about parts would
generate 100 page printouts that were then checked by hand for days. To solve this problem,
MRSA programmers built a simple user dialogue interface that would compile user sessions
to COBOL programs returning specific information.

In the same facility a PROLOG system was built to track a production line to flag bottlenecks
in procurement. Code development time was short, the system was easy for nonexperts to
use.

In the 1980’s, Topographic Labs at Ft. Belvoir used declarative prototypes for on-site terrain
recognition models.

Industrial Applications

Since 1992 there have been regular meetings of the Practical Application of Prolog Con-
ferences. Examining the program of the most recent meeting (April 1997) (available at
http://www.demon. co.uk/ar/PAP97/) reveals that programming languages based on declar-
ative concepts have been used extensively in industry, including applications such as inter-
facing users and databases to the World-Wide Web, nuclear power plant monitoring, urban
traffic control, natural language translation and parsing of financial statements, and the de-
sign and theory of intelligent agents. Some of the companies using Prolog systems in their
work include ATT, Boeing, Price Waterhouse, Vality Corp., Microsoft, and several Wall
Street firms.

A number of Prolog applications have also been fielded in mass markets. For example,
Microsoft’s popular “WindowsNT” operating system includes a Prolog Processor internally.
Prolog rules are used to describe in a declarative way the relationship and incompatibilities
between software and hardware modules. The system uses this knowledge to correctly and
efficiently configure itself for different hardware and software combinations.

3.2 Limitations of conventional declarative languages: the need for extensions

Prolog has enjoyed a commercial success in the highly specific markets it (accurately) targeted
twenty years ago. However it has fallen short of some of the lofty expectations of its earliest days.
One reason is that Prolog is the result of an unfortunate fusion of a weak, but logically pure declar-
ative core, and a series of control features and “hacks” aimed at making up for its deficiencies. The
original notion of “specification” in logic programming (proposed by e.g. Kowalski), Horn Clause
logic, turned out to be far too restrictive for many applications, and sacrificed too much efficiency
for the sake of declarity. As a result, control features (the cut, assert and retract) and semantically
ambiguous so-called higher-order predicates (call, univ) were added in an ad hoc manner to the
pure Horn Clause fragment, resulting in a hybrid language that was hardly declarative at all. To
this day, Prolog is encumbered by control constructs, regarded as indispensable by programmers,
that critically compromise the clarity of the code and make debugging a nightmare.

Extensions Logic programs written in the pure Horn Clause fragment are easy to understand,
debug, and prove correct, provided they do not resort to intricate coding schemes to simulate
control, or to capture the structure and behavior of elaborate module architectures and data types.
If they do, Prolog’s logical clarity is not really of much help. The logic and its conventional
semantics can only vouch for the agreement of input-output values with the code, but not for the
correctness of the translation of imported features into Prolog code. Unfortunately, this is often the
kind of problem the programmer and system designer are really interested in. System designers
want to think in terms of the high level concepts that actually occur in the original specification.

This is a problem directly addressed by truly declarative extensions to the Prolog core. They
make it possible for declarative code to have a high-level structure that reflects large scale character-
istics of the specification. At the same time, such extensions allow for greater ease in passing from
working specifications to code and for the implementation of high-level diagnosis and validation
environments.

A listing of the main contributions of the project researchers to the development of extensions to
the Horn-clause core is discussed in the precursor research section following the project description.

4 The Case for Declarative System Design

There have been a number of steps made in the direction of axiomatic, modular specifications [8, 21]
of software architectures (building on earlier pioneering work by Douglas Smith on the Kestrel
Interactive Specification System [267]). Many formal languages have been introduced for software
design over the past two decades [123, 261, 248, 247, 234]. Although some of these approaches have
been termed declarative because they have been based on logically precise languages, no effort has
been made to exploit the executable character or to harness the abstraction and unification features,

the context management and unformity of declarative programming languages as a specification
formalism.

In our opinion, declarative languages have a decade’s track record of success in solving problems
that are essential components of software specification, prototyping and development. They are
ideally suited to the task. Some evidence for this claim:

Metaprogramming: Declarative Languages are among the most successful languages for formal-
izing and manipulating a target language. Here even conventional Prolog has an impressive
track record, and there have been many proposals and a few implementations of metapro-
gramming extensions of the Prolog core, as discussed in the preceding section. Lipton and
his students Chapman and Ruhlen have implemented a logic program transformation and
rewriting system using SWI Prolog.

But there have been more substantial improvements. A-prolog permits the formalization of
higher-order abstract syntax: its abstraction mechanism allows abstraction of object language
variables, (-reduction implements substitution and a-conversion renaming. Higher-order
unification permits sophisticated pattern matching of programs for program transformation.
Miller, Pfenning, Hannan, Felty and others have used AProlog to specify the operational
semantics of a polymorphic functional programming language in this manner. Felty has
implemented tactics for building proofs in a powerful target theory (Coquand’s Calculus of
Constructions).

The specification matching, interface binding of components and constraint specification
discussed in connection with software architecture in e.g. [233], would be naturally expressed
using the same tools.

Formalization of Program Transformation: De Moor and his colleagues have experimented
with functional program transformation in AProlog, exploiting higher order-unification for
pattern matching with transformation rules.

Miller and Hannan [124] have illustrated how it is possible to transform high-level, prov-
ably correct, AProlog code into more explicit, low-level logic code that could be directly
implemented as a lowlevel stack machine.

Recently, Buneman and Kosky introduced a declarative language, WOL, based on Horn-
clause logic, for specifying database transformations and constraints. They also proposed a
method of implementing transformations specified in this language, by manipulating their
clauses into a normal form which could then be translated into an underlying database pro-
gramming language.

Interface specification: Prolog and extensions have been successful in specification and imple-
mentation of interfaces between components, and for the design of front ends to software
components.

Testing, validation and debugging platforms: Hermenegildo and his co-workers have imple-
mented a program validation and testing system based on an assertion language that extends
Prolog, based on abstract interpretation. Comini, Levi and others have shown how to imple-
ment error diagnosis and debugging using similar ideas.

Specification of state- and resource sensitive architectures and structures: Using
Miller’s declarative language FORUM, Miller and Chirimar have developed a natural and
modular specification of the pipelined, concurrent architecture of the DLX RISC hardware
processor. FORUM has also been used to capture most of the operational semantics of ML,
with exceptions and imperative features.

Model Checking: A significant recent success of logic programming is its application in the
area of model checking (Ramakrishna et al. [243]), a technique aimed at proving that a
system specification meets properties which are expressed as temporal logic formulae. Two
important requirements in using this technique are a mechanism that supports a clear and
concise presentation of these formulae and the rules governing their derivation and a method
for calculating the fixed-points that are usually entailed in the formulae. The logic underlying
Prolog is well suited to the first requirement, and an approach to computing with this logic
that uses memoization provides an efficient and effective means for fixed-point calculations.
These ideas have been applied to a variety of process languages and logics and have quickly
proved to be competitive with well-established systems for performing the same tasks.

Some of these recent developments will play a seminal role in our work. Our proposed research
will build on these results in various ways, extending the required theory and the implementations
with the aim of identifying the essential components of a declarative-based specification formalism
and toolkit.

We now consider some of these points in more detail.

5 Details of Proposed Research and Implementation

Higher-order hereditary Harrop formulas and AProlog This language epitomizes one of
the richest extensions to the logic of logic programming in the last decade. It introduces many
important specification and programming features previously missing from this paradigm, including
polymorphic typing, higher-order programming that captures abstractions over procedures, scoping
mechanisms that are important in modular development of programs and a stronger term-language
that considerably enhances the meta-programming capabilities of logic programming. Moreover,
all these additions are achieved in a principled way by using an expressive underlying logic.

Much recent work has been devoted to harnessing the power of this language in practice.
Sublanguages that sacrifice a limited amount of expressiveness in acceptable ways in exchange for
efficiency have been described, the most notable of these being Miller’s Ly. At the level of language
design, effort has been invested in defining a principled, yet practical, module system useful for
programming-in-the-large. Nadathur and colleagues have devised implementation techniques for
the efficient realization of scoping mechanisms and higher-order aspects and to support separate
compilation of modular programs. The latter work has relied on a deep understanding of the
theoretical underpinnings and of analysis tools: it has, for instance, introduced a calculus for the
explicit treatment of lambda calculus substitutions and utilized program equivalence notions in
compilation.

We propose continuing these investigations at the interface between theory and practice in
relation to AProlog. We will develop reasoning tools that are useful at the language level as well
as in particular application areas; an example in the former category is a calculus for reasoning

about module interactions and, in the latter category, analysis techniques for higher-order abstract
syntax. New approaches to operational semantics will be extended and exploited towards improved
compilation and the development of a satisfactory programming environment. We will also investi-
gate the coexistence of AProlog-like features with other extensions to logic programming. The end
result of these studies is to come as close as possible to a clean, comprehensive semantical account
and to give a description of interfaces between different approaches to computation. Finally, we
will test the practical relevance of our research ideas using a compiler-based implementation of
AProlog being produced by Nadathur and colleagues.

Declarative treatment of state and resources: the use of linear logic Linear logic incor-
porates within it an elegant understanding of the dual notions of resource and agent. Andreoli and
Pareschi have used these aspects of linear logic to make an effective combination of object-oriented
programming with logic programming. Their initial design, a language called LO, is the inspiration
behind the coordination language they are now developing at Xerox in Grenoble France. Hodas
and Miller have developed a linear refinement of the logic underlying AProlog, providing a logically
clean notion of state that can be encapsulated within objects. Such declarative control over re-
sources has also been shown to be useful in tasks such as natural language processing, automated
deduction, databases, and programming language specification. More recently, Miller has shown
that all of linear logic can be presented in such a way that it modularly extends all of the logic
programming languages designed using the goal-directed-search design criterion. The resulting
presentation of linear logic, called Forum, has been used in a number of recent PhD theses and also
in various computationally challenging specifications. T'wo impressive applications of this language
have been the natural and modular specification of (most) of the operational semantics of the
Standard ML programming language (including such imperative features as references, exceptions,
and continuations) and of the pipe-lined, concurrent architecture of the DLX RISC hardware pro-
cessor. Not only were these specifications more modular and flexible than the specifications often
given for these systems, it was possible to use simple facts about linear logic and proof theory
to prove various properties of these specifications. For example, it was possible to show that the
sequential semantics of the DLX processor was equivalent to its pipe-line semantics, an important
and generally difficult result to establish.

The use of linear logic in declarative programming thus paves the way for significantly more
efficient applications of declarative languages and greater ease of specification of state and resource-
sensitive information. It also makes possible testing and validation (via the assertion/diagnosis
environment environment discussed below and in the opening summary) of resource and state-
related properties of programs.

At this point it is possible to begin to make precise ways in which specification languages for
the working system developer can incorporate information that would be formalized in linear logic,
tapping this new dimension of expressive power for system specification and design. This will be
one of the goals of our research.

Verification and Debugging based on Abstract Interpretation: the research goals We
plan to devise and implement abstract interpretations for an extended collection of non-trivial
program properties. We also plan to extend the CIAO framework to deal with certain higher
order language features and specifications. In addition, we will extend the analyses themselves

to deal in an accurate and efficient way with these higher order features and with state change.
This extension will include support for dynamic modular analysis, where modules are implemented
dynamically via higher order features as opposed to the static syntactic modules supported in our
previous work. We believe that the incremental analysis techniques that we have recently developed
provide a good basis for tackling these problems. We also plan to explore other applications of
the resulting instantiations of the framework, which we see as ranging from static debugging and
program optimization to semi-automatic program documentation. All these elements are expected
to be fundamental components of the project deliverables.

Logic Programming and Program Synthesis Declarative specifications are not only suit-
able for rapid prototyping: they can also serve as the starting point for synthesizing more effi-
cient implementations. The Algebra of Programming research group at Oxford (see references
at http://www.comlab.ox.ac.uk/publications/books/algebra) has developed a calculus for deriving
programs from specifications in relation algebra. A pivotal role is played by Freyd’s theory of
allegories, which allows straightforward generalisation of some of the higher-order programming
idioms in functional programming to a relational setting. The derivation process also benefits by
categorical language in focusing on the derivation of classes of algorithms (such as dynamic pro-
gramming, greedy algorithms and branch-and-bound), rather than individual problem instances.
It is this latter feature that sets this work apart from most other attempts in formal program
synthesis, which are either very general (at the level of combining systems), or extremely detailed,
focusing on the reconstruction of a nifty algorithm for one particular problem.

The work has now reached a stage where it is possible to write meta-programs that take a
declarative specification, and apply a particular algorithm design strategy. There exist commercial
systems that support such meta-programming (in particular the Reasoning SDK, and Microsoft’s
Intentional Programming), but the meta-language employed there is mostly ad hoc. More spe-
cialised systems for meta-programming have been built on top of these products (in particular
Kestrel Institute’s Kids and SpecWare systems), but the basis of meta-programming for trans-
formation remains ill understood. We propose to remedy this situation by exploiting the recent
advances in logic programming described above, in particular AProlog, to build a library of primi-
tives for program transformation. We shall test this library against commonly known techniques for
refining declarative specifications to efficient imperative programs, and also against the algorithm
design techniques referred to above.

The surge of interest in meta-programming is demonstrated by the rapid growth of Reasoning
(http://www.reasoning.com), and the importance Microsoft places on Intentional programming,
(http://www.microsoft.research.com/research/ip). As indicated above, it is clear that while the
demand exists, the technology could benefit significantly from the expressiveness of modern declar-
ative languages such as AProlog.

Mechanisms for concurrency System programming requires the capability to specify interac-
tion and communication between the various components. This will be one of the main focusses of
Palamidessi’s research in this project.

The first attempts of enriching logic programming with explicit mechanisms for concurrency
started around the 80’s, and resulted in languages like Concurrent Prolog, PARLOG, and Guarded
Horn Clauses. All these proposals, however, suffered from a lack of declarativity of the concur-
rency mechanisms. Their meaning was specified only at the implementation level, and as a result

the resulting languages departed from a purely logical interpreation, and were quite obscure to
understand from the programmer’s point of view.

The most successful proposal coming from the Logic Programming community was the paradigm
of Concurrent Constraint Programming by Saraswat [256]. In this proposal, the Constraint Logic
Programming paradigm was enriched with communication mechanisms similar to those of Milner’s
CCS, which allowed to rely on a well-understood semantic theory.

Another proposal for integrating constraints and concurrency has been developed by Gert
Smolka and his group [269]. Their paradigm, also called Concurrent Constraint Programming,
has been the most successful as it is very expressive (in particular, it has higher-order features),
has been efficiently implemented, and it is currently being extended so to support Object-Oriented
features. Our project differs from the above proposals in that we aim at defining concurrency
mechanisms which can be justified from a logical point of view. Qur approach is to use certain
combinators of linear logic to specify process interaction, along the lines which have been explored
in the Join Calculus [106], the Gamma Multiset Rewriting [19, 20], and the Chemical Abstract
Machine [31].

Interoperability of Declarative and Imperative Programming Pure declarative program-
ming provides two different sorts of advantages:

1. algorithmic tools, such as unification and backtracking search in Prolog, pattern matching
and lazy evaluation in functional languages;

2. analytic security, particularly referential transparency.

We need to enjoy these advantages, without giving up the corresponding advantages of well-crafted
imperative programming. To some extent, the algorithmic tools of various languages may be
combined into kitchen-sink languages, usually with some loss of efficiency. But, the analytic security
of declarative languages is utterly lost in mixed declarative/imperative programming.

Instead of providing a specific hybrid language, with declarative as well as imperative constructs,
we will design and implement a clean interface for combining declarative and imperative programs.
We already have the basis for a clean and powerful interface between lazy functional languages
and imperative languages. Samuel Rebelsky, in a dissertation supervised by O’Donnell, designed
Term Tours, a new I/O protocol for lazy functional programming, generalizing pipes and streams
to allow the order of traversal of an output tree to be determined dynamically by the reader.

We propose to implement a simple lazy functional language, based on Equational Logic Pro-
gramming or on the Gopher subset of Haskell, as a Java library, using Term Tours as the procedural
interface. Using the results of Stephen Bailey’s dissertation on fast compiling of ELP and Gopher,
we can offer both interpreted and compiled lazy functional programming as functionally equivalent
alternatives, to be selected depending on performance needs. The main evaluation code of existing
interpreters and compilers remains intact in such an implementation: only the I/O procedures,
which are rather small for pure functional programming, need to be changed.

We will also seek a distributed implementation of the ELP /Java system, and an analogous way
of integrating AProlog with Jawva.

Semantics Research The text of a logic program is a formal specification, hence a mathemati-
cally precise term. Different logic programs semantics make precise what the code is supposed to

10

mean mathematically (as a specification) and computationally (how its meaning is connected to
its computational behavior). Both approaches are essential to the applications proposed here, and
are needed to understand the uses of the extensions in combination. A clear semantics is essential
to program analysis, to the design of debuggers that retain or extend the logic structure of the
original program, and to the design of tools for program development, specification refinement,
diagnosis and validation of code.

Operationality and Compositionality in Modelling Conventional Prolog semantics assigns
sets of input-output values to programs. It has two severe limitations: failure of compositionality
and blindness to operational behavior.

e Non-compositionality means the following: if P; and P, are two program components, one
cannot infer the meaning of the combined program P; U P, from the meanings of the com-
ponents. This means new models must be made each time new components are added to
a system, or preexisting components are combined. This deficiency would seem to render
conventional semantics useless for large scale system design.

e Conventional semantics are insensitive to critical operational features. For example they do
not account for non-termination, or distinguish between programs that compute the same
value in different ways, or compute it only once, instead of repeatedly, or use different system
resources. Unfortunately, these kinds of distinctions are essential, especially in integrated
systems. If a module interface is written in badly behaved (i.e. wasteful) declarative code
the whole system may perform miserably, even if the components are efficient and well-
designed. Semantic tools must provide the means for analyzing such behavior and validating
the operation of critical declarative components.

Over the past fifteen years, a research group headed by Prof. Levi has developed semantics that
address both these shortcomings, including models which are fully compositional, and a hierarchy of
semantics that distinguish between essentially all nuances of program behavior that are of interest
to programmers. This work must now be applied to Prolog extensions if they are to be effectively
used in system specification and development.

This kind of work will require cooperation between the various PI's, e.g. Levi-Nadathur-Miller
on compositional semantics for AProlog, Levi-Lipton-Freyd on categorical notions of operational
semantics, O'Donnell-de Moor for treatment of state and specification refinement, Dougherty-
De Moor for functional-logic extensions, Buneman-Lipton-De Moor for Relational and Database
extensions, etc.

Operational Semantics and Observables We propose to extend the semantics approach pio-
neered by Levi and his colleagues to more complex and powerful languages (higher-order hereditary
Harrop formulas) and by formalizing it within the categorical framework. Moreover, we want to
develop our taxonomy of observables, by taking into account refinement operators. Finally, we
want to develop semantics-based tools in the area of verification and debugging. This research will
include some of the following components.

e (The s-semantics of higher-order hereditary Harrop formulas) The s-semantics approach,
being essentially driven by the operational semantics, can be useful to obtain a denotational

11

semantics (and various versions of the Tp operator), for hereditary Harrop formulas and to
reason about operational properties, as needed in program analysis.

e (Categorical formalization of the framework of observables) Categorical tools similar to those
used in (Freyd-Finkelstein-Lipton 1994) can be useful to set a single formal framework for
reasoning about operational semantics and abstraction. We expect several useful properties,
as compositionality and precision, to be very natural to formalize in such a framework.

e (Observables and refinement operators) Refinement operators (File-Giacobazzi-Ranzato 1996)
allow one to systematically improve the precision of observables. We want to study the rela-
tion between the various refinement operators and the properties of the resulting denotation,
with the goal of making more systematic (i.e., almost automatic) the design of optimal ob-
servables.

e (Reconstruction of verification techniques) The framework of observables was recently used
as a foundation for abstract diagnosis, a novel combination of abstract interpretation and
declarative debugging (Comini-Levi-Meo-Vitiello 1996). Abstract diagnosis can be viewed as
a special case of verification without preconditions. We want to reconstruct existing verifi-
cation techniques (Apt 1996), through a suitable abstract semantics modeling preconditions.
The specification being a pre-fixpoint of the corresponding Tp operator should be the new
partial correctness condition, thus turning the “theorem proving” involved in the traditional
partial correctness conditions into a simpler “abstract execution”. The new formalization
should allow one to tackle the issue of completeness and to make the results on the system-
atic design of observables available to verification.

6 Conclusion

We propose a research project involving 11 researchers (1 PI, 1 co-PI and 9 subcontracted collab-
orators) in the area of declarative specifications and software development. The main aim of the
research is to exploit recent extensions to the syntax and semantics of the declarative program-
ming paradigm that have greatly expanded its scope and potential usefulness as a specification and
software development language. Our research will provide tools for modelling and specifying such
extensions with the following aims.

e To clarify language principles for building modular and logically correct large-scale systems.

e To exploit the potential for system development in the dual use of declarative programming
as both a programming language for rapid prototyping and a specification language for sub-
sequent implementation in more widespread languages.

e To develop programming techniques for utilizing the new declarative features and methods
for verifying and understanding these programs and to study principles for incorporating such
features into existing programming language paradigms and for their smooth interaction.

e To develop techniques based on abstract machines and compilation for the efficient imple-
mentation of the new language features.

12

e To build a program specification and testing prototype that extends the validation and ab-
stract diagnosis work done by Levi and Hermenegildo, and the program synthesis and trans-
formation research of de Moor, Miller and Buneman, discussed above.

13

Precursor Research and Results from prior NSF work

7 Some of the Collaborators’ Contributions to the Development
of Logic Programming Extensions

e Miller and Nadathur have exposed the critical, language-independent, principle of uniform
provability that facilitates declarative language design as well as a simultaneous treatment of
declarative and operational semantics. When used in conjunction with rich logical languages
this principle can lead to systematic extension of control and abstraction capabilities without
compromising declarity. It has, in fact, been already used in this fashion to introduce scoping
devices, mechanisms for modular programming, higher-order programming, higher-order ab-
stract syntax for metaprogramming and notions of state into declarative programming. The
family of declarative languages resulting from this work includes AProlog, Ly, Lolli, Forum.

e Levi and his group (including Catuscia Palamidessi) at the University of Pisa have devel-
oped operationally sensitive semantics for Prolog and the CLP constraint languages that
make it possible to reason precisely about program behavior, and to focus on computational
observables, using powerful techniques, such as abstract interpretation and collecting and
S-semantics. Levi’s group has introduced several forms of compositional semantics that per-
mit incremental development and analysis of programs. This is a fundamental contribution
towards the understanding and principled development of large scale program structure and
heterogeneous systems.

These developments have yielded powerful new tools for debugging, automatic error diagnosis
of programs and compilation.

Palamidessi has also worked extensively with the development, semantics, and implementa-
tion of concurrent logic programming, as well as abstract interpretation, denotational seman-
tics and validation of logic programs.

e Hermenegildo and his group at the Technical University of Madrid (UPM) have designed the
CIAOQ assertion environment which is one of the most practical tools developed to date for
analyzing, debugging and diagnosing declarative programs. This toolkit permits programmers
to analyze program content and behavior via high-level test assertions. The system is capable
of locating errors in code, and pointing up “symptoms” of disagreement with specifications.
In conjunction with the declarative system design research proposed here, the potential of
such an environment for end-to-end system development is enormous. It is one of the few
tools that helps the programmer mediate between working specifications and formal ones, as
well as between formal specifications and code. This work is strongly based on the technique
of abstract interpretation, which Hermenegildo and his group have applied successfully to the
design of fast and correct optimizing and parallelizing compilers. They have developed what
is currently perhaps the most frequently used framework for analysis of logic and constraint
logic programs, PLAI. This work demonstrates unequivocally the relevance of semantical
tools to implementation questions.

e Buneman and his group at the University of Pennsylvania have incorporated monadic syntax,
structural recursion, polymorphism and collection types into database languages in a way
that transparently extends the underlying relational database paradigm. This work provides
excellent guidelines on how to incorporate such features into declarative programming, as
well as a framework for reasoning about these extensions.

15

This group has also explored the use of declarative specifications for merging databases,
which is one of the more promising applications of Declarative Programming to merging
large systems.

De Moor, working with R. Bird and colleagues at Oxford, has developed a calculus for
deriving programs from relation algebra specifications. His work is based on Freyd’s theory
of Allegories. De Moor has developed a metaprogramming framework for program derivation,
and is studying the use of expressive declarative languages (such as Miller and Nadathur’s
AProlog) in conjunction with these techniques to build a declarative environment for program
transformation.

Freyd, Lipton, Dougherty, Finkelstein and McGrail have defined a categorical notion of oper-
ational semantics for logic programming with constraints, as well as categorical and (together
with Claudio Gutierrez at Wesleyan) relational formalisms for extended program syntax and
compilation of declarative extensions. Lipton and McGrail are developing monadic extensions
to incorporate, in a clean and modular fashion, data types, control and side-effects.

O’Donnell has developed the foundations of equational logic as a programming device. The
emphasis in his work has been on complete equational inference. This leads naturally to a
very precise requirement for laziness, to new and more powerful memoing techniques, to new
ideas about I/O interfaces, and to a different style of code generation from the subroutine-
per-function code of lazy functional programming.

16

8 Precursor Research from Partner Programs

Peter Buneman

Database Applications

Starting from a new approach to the construction of database queries that uses the categorical
notion of a monad to generalize set-theoretic operations to other collection types, the database
group at the University of Pennsylvania has developed a practical data query and transformation
language. The language is implemented and has been widely applied to database integration
problems, especially those arising in the field of Genomics which is characterized by the complexity
and volatility of the schemas. The language is capable of communicating not only with conventional
(relational and object-oriented) databases but also with a variety of data exchange and archive
formats. These formats have relatively complex type systems, and probably hold more of the
world’s data than conventional databases.

A variety of conservativity results establish a close connection between the hierarchy of database
languages and various extensions to this monad-based language. Moreover the categorical basis
for the language provides an equational theory that is the basis for its optimization system that is
essential to a working database language. This system is now being extended to include aggregate
functions and arrays. In another direction, the monadic optimization rules have also been used to
design an efficient and powerful language for “semi-structured” data — essentially data based on a
dynamic type system. The current research includes work on integrating these two — structured
and semi-structured — forms of data and on a uniform and compositional approach to database
constraints.

Results from prior NSF research

Project Title: Collection Types in Programming Languages and Databases

Project Period and Amount: 1995-8, $210,000

PI: Val Tannen

co-PI: Peter Buneman

Goals, Objectives, and Targeted Activities. The purpose of this contract was to study the
efficient representation and querying of collection types in both programming and databases. It
started from work on an simple algebra and syntax for complex object languages that uniformly
handles a variety of collection types: lists, multisets and sets, as well as record and variant types.
This work has been applied to the problem of querying, transforming, and integrating a variety
of non-standard databases such as scientific data formats. It also included the investigation of
optmization techniques, aggregate operations and the extension of the basic principles of collection
types to other types such as arrays and semi-structured data.

Indication of Success. The greatest success of this project has been its contribution to the Kleisli
(now K2) sustem of integration of non-standard database sources. One of the most interesting
developments in scientific databases, especially those used in biology, is the diminishing importance
of standard database technology. The data associated with the human genome project is complex
and is evolving rapidly. Because the data is so volatile and the boundaries of the domain are ill-
defined, efforts to build large integrated repositories in using standard relational or object-oriented

17

technology have met with mixed success, and there is increasing reliance on a tools for integrating
a variety of complex heterogeneous data formats that have been designed for the transmission and
archiving of data. The problem of providing scientists with tools for understanding, integrating,
and analyzing the proliferating data sources at their disposal is one of the great challenges facing
database research.

By developing “drivers” for most current data sources have been constructed, Kleisli has been
used extensively within bio-informatics projects both within and outside Penn. The software is now
deployed in a number of pharmaceutical companies. We have applied for patents on optimization
techniques for aggregate queries and for query languages for semi-structured data.

Potential Related Projects. Much of the research in this project resulted from the fusion of
ideas in programming languages and in databases. The PIs feel that there is more to be gained
from this interaction, especially in the study of type systems for object-oriented languages.
Project Impact.

e The project has been used partly to fund two PhD students, both current, one female.

e Some of the material on collection types is used in Penn undergraduate and graduate courses
on databases. It is also used in a course in parallel computation.

e The ability to integrate biological databases was of key importance in the foundation of
Penn’s Center for Bioinformatics, the first in any US academic institution.

e A number of industrial collaborations have been are based upon our database integration
work, notably with SmithKline Beecham. As mentioned above we have filed for two patents
based on optimization work.

Publications resulting from award:

1. “Path Constraints in Structured and Semistructured data”, P. Buneman, W. Fan and S.
Weinstein, to appear in PODS 98

2. “A Kleisli interface to Shore”, C. Hara, S Davidson and L. Popa. Brazilian Database Con-
ference, September 1997

3. “Adding Structure to Unstructured Data”, P. Buneman, S.Davidson, M. Fernandez and D.
Suciu, Proc. ICDT, Delphi, Jan 1997.

4. “A Typed Pattern Calculus”, D. Kesner, L. Puel, and V. Tannen. Information and Compu-
tation, 124, 1996, pp. 32-61.

5. “Principles of programming with complex objects and collection types”, P. Buneman, S.
Naqvi, V. Tannen, and L. Wong. Theoretical Computer Science, 149, 1995, pp. 3-48.

6. “Challenges in Integrating Biological Data Sources,” S.B. Davidson, C. Overton and P. Bune-
man. Journal of Computational Biology 2:4 (Winter 1995), pp 557-572.

7. “A Data Transformation System for Biological Data Sources,” P. Buneman, S.B. Davidson,
K. Hart, C. Overton and L. Wong. Proceedings of the 21’st International Conference on Very
Large Data Bases (September 1995), pp. 158-169.

18

8. “BioKleisli: A Digital Library for Biomedical Researchers,” S.B. Davidson, C. Overton,
V. Tannen and L. Wong. Journal of Digital Libraries 1:1 (November 1996).

9. “A Query Language and Optimization Techniques for Unstructured Data,” P. Buneman, S.B.
Davidson, G. Hillebrand and D. Suciu. Proceedings of SIGMOD’96.

10. “Programming Constructs for Unstructured Data,” P. Buneman, S.B. Davidson and D. Suciu.
Proceedings of the Workshop on Database Programming Languages (Sept. 1995).

Software created and now being made available to the research community. Details
about the Kleisli prototype are available at http://www.cis.upenn.edu/~db/home.html. This
page contains:

e CPL Web Service: allows you to interactively evaluate CPL queries, and to create and execute
parameterized queries encoded in HTML forms.

e Form Based Human Genome Map Search: a sample parameterized CPL query encoded in an
HTML form.

e CPL manual: description and examples of the language.

Kleisli is also being used in several industrial and research projects outside Penn: 1) within SmithK-
line Beecham; 2) within Lockheed-Martin; and 3) at the University of Manchester; 4) by Bob
Grossmans’ group at University of Illinois - Chicago; and 5) numerous projects associated with the
Limsoon Wong’s group in the Bioinformatics Center, Kent Ridge Digital Laboratories, Singapore.

Dan Dougherty

Dan Dougherty has conducted research relevant to the present proposal under the Office of Naval
Research grant Computing with Relations — Combinatory Logic Programming, Types and Alle-
gories. Office of Naval Research grant N-00014-95-1-0634, 1995-96.

This work has been concerned with the interaction between first-order and higher-order lan-
guage features, both in the programming language and theorem-proving contexts.

Unification and matching is fundamental in theorem-proving and logic programming. Unifica-
tion and matching under an equational theory embodies a strategy of building semantic reasoning
directly into the computational engine itself, as opposed to explcitly mixing general facts about
the underlying domain with the representation of the specific problem at hand. In collaboration
with Frederic Otto and Paliath Narendran, we investigated the relationships between equational
unification, equational matching, and second-order matching and unification.

There is work in progress on the higher-order matching problem. Taking a model-theoretic
approach to the problem has lead to simple proof of decidability of fourth-order case. From the
work of Tannen and Gallier, we know that such a decidable fragment remains decidable when
a matching-decidable first-order equational theory is added. A typical example is the addition of
asociative-commutative operators to a theory. The applications here are to program transformation
and the automated derivation of programs.

In collaboration with Pierre Lescanne at Ecole Normale Superieure de Lyon, we are exploring
some aspects of explicit substitutions as applied to implementation of functional programming

19

languages. Specifically, we prove standardization and strong normalization theorems; these are the
foundations for the correctness of various evaluation strategies (call-by-value, call-by-need, lazy
evaluation).

Our graduate student Claudio Gutierrez has shown the decidability of the equational theory of
allegories, and given reasonably tight bounds on the computational complexity. The decidability
of the unification problem for this theory is still open. As part of the attack on this problem,
Gutierrez has achieved a much-improved bound (single-exponential space) on the complexity of
unification under associativity.

Peter Freyd

Categorical Logic Programming

The research described here was supported under
ONR grant NOOO14-92-J-1878 PO5.
Budget Period: 06/01/92 - 02/27/97
Total Award: $400,000
Title: Relations, categories and Computations
(Categorical Foundations of Constraints & Logic Programming)

New Foundations for declarative programming Categorical logic extends the scope
of logical syntax and semantics by generalizing certain components: the syntactic domain of
individuals, connectives, identity of terms and predicates, unifiablity, the notion of proof and
transition, and the meaning of quantifiers.

The extra expressive power results in more powerful declarative languages and also gives
natural framework for modelling many proposed extensions of the declarative paradigm.

In joint research with Finkelstein and Lipton [100] we showed how to define programs, proof
rules, and an interpreter algebraically, over finite product categories with certain canonical
structure. This led to new declarative extensions, including monadic extensions for cleanly
adding data types, and notions of control, studied by McGrail and Lipton [173].

Using the Kowalski-Van Emden fixed point theorem as a starting point we developed a cat-
egorical notion of operational semantics and abstract machine. We gave a unified treatment
to a number of logic programming extensions, including programming with constraints (built
into the underlying categorical syntax) and we outlined an axiomatic approach based on
continuous functors.

Cartesian and alternation logic: The preceding results were based on some parallel
research into new ways to formalize categorical syntax. I developed the syntax and proof
theory corresponding to ”regular’ and ”extensive” categories. Among the theories that appear
as special cases of this syntax are ”essentially algebraic theories” and almost every theory
of ”categories with structure”. Perhaps the most important single case is the theory of
cartesian categories. (Note that categories with products are most definitely not a special
case of equational algebraic theories.)

20

Motivated originally by the purest of considerations, an important pay-off has been under-
standing how freely to adjoin various kinds of new types to a programming language, and
predicates to a base category in logic programming. The construction can be relativised to
produce the categeory of predicates generic with respect to a given cartesian or alternation
theory, which allows constraints on predicates to be “hard-wired” into the syntactic category
over which resolution is carried out. This leads to a new approach to disjunctive and negative
goals in logic programming as well as a new and very general way to build in data types and
control into the structure of a logic programming interpreyer.

Semantics of polymorphism:

This work was supported under
NSF DMS 90-08052
Title: Semantics of Programming
Amount: $46,000
Period: 8/1/91-1/31/94
Location: University of Pennsylvania
Person Months Support: 2 summer months

as well as under the aforementioned ONR contract.

It involved extensive research into the semantics of polymorphism useful in understand-
ing functional programming languages, in particular, analysis of the notion of ”parametric-
ity” in polymorphism as introduced by Reynolds. (Papers with E.S.Bainbridge, A.Carboni,
J.Y.Girard, P.Mulry, E.Robinson, G.Rosolini, A.Scedrov, D.Scott, P.J.Scott [107, 111])

Recursive types: ONR and NSF-supported research into problem of recursively defined
types for mixed variance. As Plotkin had shown, defining a type on a covariant recursive
type-variable is equivalent to asking for an ”initial T-algebra”. The invention of ”algebraically
compact categories” [110] succeeded in resolving the problem for mixed variance. These
categories are ubiquitous in computer science but entirely novel from the point of view of the
pure mathematical origins of category theory.

Manuel Hermenegildo

Verification and Debugging based on Abstract Interpretation.

Abstract Interpretation (Cousot and Cousot 1977, [65]) is a semantics-based approach to pro-
gram analysis. The associated theory provides a framework for inferring properties of programs by
computing fixpoints over semantic equations. These equations are defined over a domain of approx-
imations rather than the concrete domain used by the program. Despite the generalized acceptance
of abstract interpretation as an elegant framework for proving the correctness and termination of
sophisticated program analyses (including most traditional types of dataflow analysis), it has only
relatively recently been applied directly to the construction of analyzers in practical compilers.
However, the practical results obtained with this technique in the field of logic programming have
been surprisingly good in terms of both accuracy of the program information inferred and efficiency

21

of the resulting compilers, comparing very favorably with traditional ad-hoc techniques, and with
the added advantage of being proved correct. Significant practical results have been obtained for
example in automatic parallelization (Bueno, Garcia, Muthukumar, Hermenegildo 1990-95) and
optimization of Prolog programs (VanRoy 1992). Recently, some results have been extended to
constraint logic programming (Garcia, Hermenegildo, Janssens, Bruynooghe 1997). The results
of applying these techniques are that Prolog programs can be compiled to run in a time that is
comparably close to equivalent programs written in C, and that significant speedups beyond that
can be obtained automatically by exploiting parallelism.

Recently, we have proposed a novel view of specifications as abstract properties (Bueno et
al. 96, Hermenegildo et al. 97) through which it is possible to relate the traditional concepts of
validation and diagnosis with approximations of semantic fixpoints. This view allows modeling
(and implementing) verification of specifications as an abstract interpretation. A clear example
that fits this model well is the case of types as specifications and type inference as corresponding
verification. Types can be seen as abstract properties and the type inference procedure as an
abstract interpretation. This work provides a unified framework for static and dynamic verification
of a very general kind of properties. Safe approximate verification (in the sense that some properties
may not be verified statically) can coexist with run-time checking techniques. We have implemented
a prototype framework for such a system (the CIAO assertion environment), and it has been
instantiated for some properties for which abstract interpreters were available. The system is
capable of locating errors in code, and pointing up “symptoms” of disagreement with specifications,
for this limited set of properties.

Related Grants:

e In ESPRIT Project PRINCE (BR 5264), a framework was developed for analysis of con-
straint logic programs, based on the technique of abstract interpretation. This framework is
generic in that it allows inferring classes of properties of programs by defining for each such
class a corresponding abstract domain and a fixed set of operations on this domain. This
approach has been applied to infer the types of procedure arguments and the calling modes
of procedures.

e In ESPRIT Project PARFORCE (BR 6707), new abstract domains were defined and used
to infer properties such as upper and lower bounds on the computational cost of procedure
calls. The approach has since been extended to also infer non-failure and determinacy of
procedures.

e In ESPRIT Project DISCIPL (LTR 22532), an assertion-based program development envi-
ronment has been designed. This environment uses the abstract interpreter to infer properties
of programs which are checked against partial specifications given by the programmer in the
form of assertions. Also, an abstract program specializer has been developed which allows
specializing generic programs with respect to (possibly infinite) classes of values, as opposed
to the fixed set of concrete values typically used by traditional specializers.

22

Giorgio Levi
Observables, operational and denotational semantics

The s-semantics approach (Falaschi-Levi-Martelli-Palamidessi 1989, Falaschi-Levi-Martelli-Palamidessi
1993, Bossi-Gabbrielli-Levi-Martelli 1994, Gabbrielli-Levi-Meo 1995, Gabbri elli-Levi-Dore 1995,
Gabbrielli-Levi-Meo 1996,Comini-Meo 1997) gives a denotation to a pure logic program starting
from the operational property (observable) one wants to model. Examples of observables are
computed answers (answer constraints in the constraint logic programming case), partial answers,
correct answers, call patterns, resultants and SLD-derivations. The denotation can always be
equivalently defined by an operational construction (observables computed by a transition system
for pure atomic goals) and a denotational construction (least fixpoint of a Tp-like operator). The
denotation is AND-compositional, i.e. it uniquely determines the behaviour for all goals.

The various observables can mutually be related by using abstract interpretation techniques
(Comini-Levi-Meo 1995). This has allowed us to systematically derive the (abstract) denotations
from the observable and the collecting semantics (SLD-derivations). We have also characterized
classes of observables according to their semantic properties (compositionality, precision, relation
between denotational and operational semantics). The framework allows us to handle approximate
observables useful for static program analysis.

Related Grants

1. (European Community) Esprit Project 6707 (Parallel Formal Computing Environment, PAR-
FORCE) from July 24 1992 to January 23 1996 160,000 Ecus

2. (European Community) EC-Israel Exploratory Collaborative Activity ISC-IL-90-Parforce
(Bottom-up Analysis of Logic Programming Languages: Theory, Practice and Applications)
from January 1 1995 to June 30 1997 50,000 Ecus

Jim Lipton

Results from ONR supported Research

The work described below was carried out with partial support of the ONR under research grant
(ONR)n-00014-95-1-0634 Relations, Categories and Computation (1995-97) and the Computing
with Relations project (ONR grant 4331-001-srp-01) and an ONR travel grant to Cambridge Uni-
versity for the Fall of 1995.

The principal lines of research carried out by PI’s Peter Freyd and Jim Lipton and by co-PI’s
Dan Dougherty, Stacy Finkelstein, and their students were:

1. Logic Programming via (Relational) Rewriting
2. Computing in Allegories.
3. Monads and Data enrichment in logic programming

4. Categorical Foundations for Extended Logic programming

23

5. The logic of Cartesian and Alternation categories

The main results are contained in a series of papers by the Pi’s as well as two theses, one
prototype and two dissertations in progress. We will discuss 1-3 below along with a brief description
of the research areas just outlined. Items 4 and 5 are discussed in the results from Peter Freyd’s
precursor research.

Logic Programming via Relational Rewriting The aim of our research was to extend the
results obtained under the preceding ONR grant, summed up in our proposal, and published in
Lipton and Broome’s [157]. Briefly, the point of view put forth in that work was that, using a
translation based on theorems of Tarski, Maddux and Freyd, Logic programs define equational and
categorical constraints on relation variables.For example, a program like

connected(X,Y) :—~edge (X,Y) .
connected(X,Y) :- connected(X,Z),edge(Z,Y).

can be viewed as a specification of a least solution to the equation
connected = edge U connected; edge,

which we call the translated program , subject to additional constraints that capture the class
of domains over which the equation is to be solved. Queries to the original Prolog program are
compiled to relation expressions built from the displayed equation. The search for a solution is
carried out via rewriting in the appropriate free relational structure or allegory.

We proposed, in the second phase of the grant, to make the translation more efficient, and to
extend it to a more general class of programs, as well as to work out a detailed theory of rewriting
in Relational structures (e.g. distributive & division allegories) along the lines already initiated,
including a study of termination and CR.

A considerable amount of progress was made. We substantially improved the translation above,
defining a Relational Abstract Machine for Logic program compilation. We assocated a rewriting
system with each program and constraint-set which is CR, and has better termination properties
than Prolog depth-first search. The abstract machine is defined and shown correct in [53], submitted
to the proceedings of Relmics 97 (Relational methods in Computer Science). In this paper we
show how to compile and extend the resulting rewriting system to programs with equational and
disequational constraints.

A compiler based on these results was implemented by Emily Chapman, and is described in
detail in her thesis [52]. A rewriting engine for the relation calculus, used to execute compiled
programs, was implemented by Matthew Rhulen at Wesleyan and formally described and shown
correct in [252].

Computing in Allegories

The research described in the preceding section, originally aimed at extending logic programming
using the relation calculus, inevitably led to a study of relational rewriting for its own sake as a new
paradigm for computing. This was first touched on in the [157] paper. Under the current grant,
PI Jim Lipton and co-PI Daniel Dougherty at Wesleyan, together with graduate student Claudio
Gutierrez began investigating rewriting systems for the pure theory of allegories, and tabular and

24

distributive allegories, based on a graph translation idea of Freyd [112], and refined by Freyd in the
first phase of this grant. Several SN calculi have been defined in Gutierrez’ dissertation providing
new proofs of decidability of these fragments, originally established by Freyd.

Dougherty and Gutierrez are currently studying the complexity of these fragments using graph
rewriting.

Dale Miller

CURRENT

“An Effective Framework for Implementing Derivation Systems.” Funded by NSF, July 15, 1998
to June 30, 2000 for a total of $70,000. CCR-9803971

“Structuring of Proof Search in the Logic Programming Paradigm.” Funded by NSF under
NSF-INRIA Collaborative Research Program. Total of $18,000 for travel and workshop. Other
researcher on this proposal is Pierre Deransart INRIA /Rocquencourt. INT-9412553

PENDING

“A Framework for Specifying, Prototyping, and Reasoning about Programming Languages”, sub-
mitted October 1998 to the NSF Program for Software Engineering and Languages, CCR, CISE.
PIs: Dale Miller and Catuscia Palamidessi. For a total of $315,765 for three years.

Proposal for a French-American Collaboration, “Research on Declarative Programming Lan-
guages”. Submitted to the National Science Foundation under NSF-INRIA Collaborative Research
Program. Travel and workshop funds. Other researchers on this proposal are Peter Lee and Frank
Pfenning (CMU) and Yves Bekkers, Charles Consel, Pascal Fradet, Daniel Le Metayer, and Olivier
Ridoux (INRIA/Rennes).

COMPLETED

Funds from Consiglio Nazionale delle Ricerche (CNR) to support one month of sabbatical stay in
Siena, Italy, January 1997.

Principal investigator on NSF grant, “Concurrency and Proof Theory”. Total of $190,031 for
three years, October 1993 — September 1996.

Principal investigator with Andre Scedrov on NSF grant, “Proofs as Computations”. Total of
$222,882 for September 1994 — August 1996. Extended until February 1997.

Principal investigator on ARO on “Formal Methods for Software Engineering” for $900,000 for
three years starting Jan 1995. Professors Lee and Gunter are co-Pls.

Principal investigator on ARO on “Formal Methods in Software Engineering: Interfaces between
Software Components” for $12,000 for a workshop to be held in 1996. Professors Lee, Gunter, and
Tannen are co-Pls.

Funds from Consiglio Nazionale delle Ricerche (CNR) to support 2 months of sabbatical stay
in Genoa, Italy, September and October 1996.

Principal investigator on ONR grant, “Programming Language Design and Proof Theory”.
Total of $195,000 for three years, September 1993 — August 1996.

25

Principal investigator with Andre Scedrov on NSF grant titled “Analysis and Development of
Meta-Logics and Logical Frameworks.” for three years, ending December 1995. Supplement for
tuition for minority student award received September 1994.

Prinicpal investigator on the ONR grant “The Role of Logic Programming as a Specification
Language for Theorem Provers”, Office of Naval Research, 1985 - 1988.

Prinicpal investigator with 7 others from Penn, Cornell, and Stanford on NSF-INRIA grant for
travel to France. Total of $62,000 for two years, starting May 1989.

Principal investigator with Andre Scedrov on NSF grant titled “Higher-order proof systems.”
Total of $338,807 for three years, starting July 1987.

A grant from SERC for travel to the UK. Total of $4545 for two years, starting June 1988.

Oege de Moor

St. John’s JRF (1991-93)

The purpose of this research fellowship was to establish the foundations of a calculus for program
derivation, for deriving functional programs from relational specifications. The starting point was
a purely functional calculus, invented by Richard Bird and Lambert Meertens, which has clear
categorical foundations. Indeed, the simplicity of the calculus largely derives from the fact that all
reasoning is conducted with total functions. This has the disadvantage that many specifications
(involving nondeterminism and function converses) cannot be allowed in that calculus.

Using Freyd’s theory of allegories, De Moor showed how the mathematical structures important
to functional programming (in particular inductive data types) could be generalised in a canonical
way to relations. Furthermore, applying the construction twice gives a similar correspondence
between relations and specifications as rely/guarantee pairs.

The resulting calculus of relational specifications has been highly successful, and is now being
pursued by research teams at Oxford, Eindhoven, Milan, Rio and Cape Town. The connection
with rely/guarantee pairs has not been as popular, although there is still a steady stream of papers
on the subject, mostly from Turku and Queensland (Australia).

Rely/guarantee pairs give a neat model of the combination of angelic and demonic nondetermin-
ism. It has been suggested (by Ralph Back) that this model might be used to give a straightforward
yet rigorous semantics to disciplined use of the ‘cut’ operator in logic programming. If this is indeed
possible, it would clearly be highly relevant to the present proposal.

Faculty member of Fujitsu chair (1993-1994)
This 8-month research appointment was used to collect the above research in a textbook, which
has since appeared as a special Volume 100 in the well-known ”red-and-white” Prentice Hall series.
Visiting Fellow, Chalmers University (1994)

This 4-month research appointment was used to implement an extension of the functional program-
ming language Haskell, to allow a certain kind of higher-order polymorphism. This has since been
called “polytypism” by Jeuring and others. It allows one, for example, to write a single function
for unification, which is parameterised by the datatype of terms.

26

During this fellowship I also developed the first generic program for sequential decision processes
- which was presented in an invited talk at PLILP ’95.

9 Generic Solutions to Optimisation Problems (1996-99)

The objectives of this travel grant are:
e to encapsulate algorithmic paradigms in generic programs

e to unify and relate existing algorithms by expressing them as instances of such generic pro-
grams

e to use these case studies as a testbed for recent advances in programming language design

This grant has now been running for two years, and Oxford’s participation in the present
consortium is a natural consequence of the work: it turned out that we need the facilities of
extended logic programming languages to realise the above objectives. Certain generic programs, in
particular for the branch-and-bound paradigm, can be expressed in modern programming languages
using features such as higher-order polymorphism. Although the asymptotic time complexity of
these generic solutions is on a par with specialised, hand-written code, the constant factors are high
because many little domain-specific optimisations are missed out by current compiler technology.
It would be preferable to state such optimisations as annotations on the generic solution: the
translation process then requires the power of extended logic programming to explore various ways
of applying the optimisations. Standard logic programming does not suffice, because we need,
for example, higher-order unification to express common techniques such as the introduction of
accumulation parameters in a convenient manner. The goal is to develop a new kind of environment
for transformational programming that permits software to be composed from a set of independent
design decisions or ”intentions”, using domain-specific notations and optimization strategies. The
specific aim of the Oxford component of the work is to design a meta-language for the environment,
within which domain-specific abstractions can be described, implemented and reused.

This project provides a perfect practical complement to the more foundational studies in the
present proposal. The overlap is in the study of language features that facilitate meta-programming.
While in the collaboration with Microsoft we take a short-term, pragmatic approach, the present
proposal seeks more radical solutions in recent extensions of logic programming.

10 A Meta-language for IP (1998-2001)

Oxford University Computing Laboratory recently started a three-year research project in collab-
oration with Microsoft Research Laboratories. The goal is to develop a new kind of environment
for transformational programming that permits software to be composed from a set of

Related Grants

Generic Solutions to Optimisation Problems The objectives of this travel grant are:

e to encapsulate algorithmic paradigms in generic programs

27

e to unify and relate existing algorithms by expressing them as instances of such generic pro-
grams

e to use these case studies as a testbed for recent advances in programming language design

This grant has now been running for two years, and Oxford’s participation in the present
consortium is a natural consequence of the work: it turned out that we need the facilities of
extended logic programming languages to realise the above objectives.

A Meta-language for Intentional Programming Oxford University Computing Laboratory
recently started a three-year research project in collaboration with Microsoft Research Laboratories.
The goal is to develop a new kind of environment for transformational programming that permits
software to be composed from a set of independent design decisions or ”intentions”, using domain-
specific notations and optimization strategies. The specific aim of the Oxford component of the
work is to design a meta-language for the environment, within which domain-specific abstractions
can be described, implemented and reused.

This project provides a perfect practical complement to the more foundational studies in the
present proposal. The overlap is in the study of language features that facilitate meta-programming,.
While in the collaboration with Microsoft we take a short-term, pragmatic approach, the present
proposal seeks more radical solutions in recent extensions of logic programming.

Gopalan Nadathur

Prior NSF Supported Research

Nadathur has obtained funding for related work from four previous NSF grants extending over a pe-
riod of eight years. The first of these was NSF Grant IRI-88-05696 entitled “Extending the Domain
of Logic Programming,” obtained jointly with Donald W. Loveland. The grant amount was $91,033
with active period Aug 1, 1988 - July 31, 1989. The second was NSF Grant CCR-89-05825 entitled
“Higher-Order Metalanguages for Implementing Derivation Systems,” which provided $148,556
over the period Jan 1990 - Jan 1992. The third one, entitled “Towards Practical Higher-Order
Metalanguages,” was originally numbered CCR-92-08465 but changed to CCR-9596119 on being
moved to the University of Chicago. This grant provided a total funding of $205,222 during the
period July 15, 1993 - Dec 31, 1997. The final grant is an ongoing one numbered CCR-9803849
and entitled “An effective framework for realizing derivation systems.” The projected award value
of this grant is $163,000.

The mentioned grants have supported research towards understanding the connections between
proof search and computation, devising new programming and specification languages based on this
understanding and exploring the implementation and use of these languages. The results obtained
specifically under these grants are summarized as follows:

e A particular form of goal-directed provability called uniform provability was identified and
used to provide a foundation for logic programming [188]. This work also described the full
logic underlying AProlog. The foundational work has been quite influential, its general ap-
proach being adopted by other researchers towards a principled addition of other capabilities

28

to logic programming. In recent work, Nadathur have used the uniform proof notion to an-
alyze disjunctive logic programming [163, 207] and to describe proof procedures for classical
logic [202, 203].

e Programming language related features of AProlog such as its type system [214] and its
higher-order capabilities [212] have been studied and exposed.

e Questions relevant to providing an efficient and robust implementation of the new features
of AProlog have been investigated. A new notation has been developed for lambda terms
that supports their deployment in AProlog as representational devices [217, 219] and the use
of this notation in realizing intensional operations such as comparison and unification [201]
has been studied. Along other dimensions, treatments have been provided for types [153],
scoping primitives [140, 199, 205], higher-order aspects [204, 206] and modules [152, 216].
All these ideas have been embedded in an abstract machine that has been designed for the
overall language.

e An implementation of AProlog that uses the above mentioned ideas has been developed
[213]. This implementation is based on a software emulator for the abstract machine and
a compiler for translating AProlog programs into instruction sequences for this machine.
This implementation has several important attributes, including the fact that it supports the
separate compilation of modular program units.

e Significant parts of the described implementation have been verified. An especially notewor-
thy aspect is the verification of a large portion of the abstract machine structure, a task
carried out in the doctoral dissertation of Keehang Kwon [150, 151].

The grants have supported two undergraduate and four graduate students, the latter being
Keehang Kwon, Paul Szymkiewicz, Guanshan Tong and Debra Wilson. Kwon and Tong have
obtained doctoral degrees from Duke University and University of Chicago, respectively. Kwon is
currently employed as an Assistant Professor at DongA University, Korea and Tong is a member
of the staff at Santa Cruz Operation (SCO), New Jersey. Szymkiewicz and Wilson have obtained
masters degrees from Duke University. Along a different direction, Nadathur has developed a
course entitled “Higher-Order Logic Programming” that covers a spectrum of topics related to the
research funded by the NSF grants. This course has been offered at both graduate and advanced
undergraduate levels at the University of Munich and the University of Chicago and will also provide
material for a series of expository lectures to be given at ESSLLI 1999 in Utrecht, Netherlands.

Michael O’Donnell

Michael O’Donnell’s latest grant relevant to this proposal was Theory and Implementation of Equa-
tional Logic Programming ($161,136) National Science Foundation, 1991-1993, which produced the
following results.

The Equational Logic Programming group at the University of Chicago performed substantial
research on improvements to the utility and performance of equational compilers. We improved a
compiler for Equational Logic Programming (ELP), implemented under a previous grant, and also
wrote a completely new compiler for ELP.

29

We also worked on full-text information retrieval and semantics for constructive logic, we began
a new study of digital sound synthesis, and we founded a scholarly journal on the InterNet.

Besides Prof. O’Donnell, the grant supported research by a postdoctoral associate from the Peo-
ple’s Republic of China, four doctoral students who completed dissertations with Prof. O’Donnell,
and two college students.

Equational logic programs are sets of equations; their computations are highly disciplined proofs
using the given equations as hypotheses. The definition of equational logic programming is anal-
ogous to Prolog, which computes by theorem proving in the predicate calculus, but the style of
programming in ELP is essentially lazy functional programming. The ELP project produced and
studied several experimental compilers, including a portable version compiling to C, and a fast
interactive version compiling to DEC MIPS and Sun SPARC. We adapted congruence closure—a
powerful technique for avoiding recomputation of values that are already computed, previously
used for theorem proving—as a new technique for efficient computation in lazy functional pro-
grams. The project also developed new optimization techniques for Prolog based on compile-time
abstract evaluation.

We designed and implemented term tours, a novel protocol for lazy functional Input/Output,
previously one of the least satisfactory aspects of functional programming. Term tours also allow
functional programs to interact naturally with conventional procedural programs. We used lazy
functional programming to implement a full-text information-retrieval system for the 2,000-book
ARTFL database of French literature.

The project made theoretical advances in term-rewriting systems, including new techniques
for determining the most efficient sequence in which to evaluate an expression, and more general
criteria for guaranteeing the uniqueness of the final result under different evaluation orders.

The project produced 1 Ph.D. dissertation, 2 refereed journal articles, 10 refereed conference
articles, and 2 invited conference presentations during the funding period.

Catuscia Palamidessi

The Human Capital and Mobility project EXPRESS Funded by: the European Economic Com-
munity Contract number: CHRX-CT93-0406 Signed in: December 93 Starting Date: January 94
Duration: 4 Years (3 in the original contract + 1 extension) Total budget: 470,000 ECU (about
540,000 USD). Structure of the network: 3 main sites and 6 subcontractors.

— More detailed description:

EXPRESS was a Human Capital and Mobility project (i.e. a Cooperation Network involving
several sites) funded by the European Union. EXPRESS aimed at investigating the Expressiveness
of Formalisms for Computing. More precisely, the purpose was to achieve a general understanding
of the interconnections and relations between formal systems, ranging from programming languages
to related axiom systems or rewrite systems. One of the key parts of the project was the systematic
study and development of formal methods to compare programming concepts on the basis of their
relative expressive power. Such methods provide a tool to classify the variety of programming lan-
guages, and therefore a formal basis for the design and implementation of programming languages.
Similarly, the project aimed at developing tools for comparing the formal methods for specification
and verification developed within the various programming paradigms.

The project EXPRESS started in 1994 and had a duration of four years. The total budget was
470,000 ECU (about 540,000 USD). The Network was composed by the following main sites: the

30

Centre for Mathematics and Computer Science, with co-PI’s Jan Willem Klop and Frits Vaandrager
(NL), the University of Genova, with PI Catuscia Palamidessi (IT), the University of Hildesheim,
with PI Eike Best (DE). The other associated (sub-contractor) sites are: the University of Roma,
with PT Rocco De Nicola (IT), the University of Utrecht, with PI Frank de Boer (NL), the Swedish
Institute of Computer Science, with PI Joachim Parrow (SE), the INRIA Sophia-Antipolis, with PI
Iaria Castellani (FR), the INRIA Rennes, with PI Philippe Darondeau (FR), and the University
of Sussex, with PI Mathew Hennessy (UK).

The project has sponsored visits among the various sites, and also with sites outside the network,
whenever relevant for EXPRESS. It has sponsored participation in conferences for presenting results
achieved in the scope of EXPRESS, and has funded the organization of three workshops and
one conference: The EXPRESS workshops were organized by Frits Vaandrager (Amsterdam, NL,
1994), by Rocco de Nicola (Tarquinia, IT, 1995), and by Ursula Goltz (Dagstuhl, DE, 1996). The
EXPRESS conference was chaired by Catuscia Palamidessi and Joachim Parrow (Santa Margherita
Ligure, IT, 1997). The proceedings of this conference were published on ENTCS [229] and a
selection of the best papers will be published on Information and Computation [230].

The project has also sponsored a Post-doc program, allowing the following long-term visits: E.
Marchiori at CWI for 6 months, D. Kullmann at CWI for 3 months, A. Mader at KUN for 12
months, J. Rathke at the University of Genova for 3 months, A. Schmitt at the University of Roma,
for 6 months, A. Huhn at INRIA S.A. for 3 months, W. Thielecke at INRIA S.A. for 3 months, J.
Rathke at INRIA S.A. for 3 months, F. Raamsdonk at INRIA S.A. for 3 months, C. Veglioni at
the University of Amsterdam for 3 months, and F. Oliver at INRIA R. for 5 months.

The project has been quite successful in raising the interest of scientists on the topic of expres-
siveness. Even after the end of the project, the EXPRESS meetings are continuing along the line of
EXPRESS’97, i.e. as conferences with an open call for papers, invited speakers, panels, etc. This
year (1998) the EXPRESS conference was chaired by Catuscia Palamidessi and Ilaria Castellani,
and was held in Sophia-Antipolis (FR). Next year it will be chaired by Ilaria Castellani and Biérn
Victor, and will be held in Eindhoven (NL).

Research carried on by Catuscia Palamidessi in the context of the EXPRESS
project

Formalization of the concept of expressive power for concurrent languages. It is a
matter of fact that up to now there is no general formalization of the concept of expressiveness of
programming languages. In the theory of formal languages there is a well-established classification,
which has at the top the Turing-complete formalisms. However this classification is too coarse: All
“reasonable” programming languages are Turing-equivalent. On the other hand, it is clear that
there are important differences between programming languages, otherwise we would not have
invented so many of them. Obviously a formal theory of “expressiveness” would be extremely
valuable, both for design and implementation issues.

In the setting of concurrent languages, this problem becomes even more challenging, because
the intuitive gaps in expressive power between the various proposals existing in literature are even
more dramatic.

A first step towards the definition of a notion of expressiveness for concurrent languages, and the
development of a framework for comparing the relative expressive power, was done in [68], where the
following definition was proposed: L can express L' if there exists a translation (compiler) C from

31

L' to L homomorphic w.r.t. certain operators, and a function D (decoder) from the observables O
of L to the observables (', preserving certain termination modes (proper termination, deadlock or
failure, non-termination), such that for every P € L', DOCP = O'P holds.

This framework was used to show various separation results among concurrent constraint lan-
guages, among (synchronous) CSP and Asynchronous CSP, and among various CSP dialects.

Investigation and comparison of various versions of Concurrent Constraint Program-
ming. In [91] various fragments of CCP have been investigated. For some of them a very simple
semantics, based on closure operators, has been developed. This semantics can be regarded as an
approximated semantics of (full) CCP, and be used as a basis for static analysis [94, 91, 95], by
means of abstract interpretation techniques. Furthermore, for some of these fragments it has been
possible to develop a system for proving partial correctness [67].

First steps towards Distributed Constraint Programming. In [35] a new notion of con-
straint system has been investigated, with the aim of providing foundations for a distributable
variant of CCP [34, 228].

Comparison of the expressive power of synchronous and asynchronous communication.
In [227] it has been shown that it is not possible to encode the m-calculus [190] into the Asynchronous
m-calculus (a subset of the w-calculus which has been implemented by B. Pierce and D. Turner,
[43, 130, 222]). This result was quite surprising, since several publications in well respected journals
and conference proceedings had conjectured that the two languages were equivalent.

32

